title_organisation_de

-»Diese Ausgabe ist für Browser ohne zureichende CSS-Unterstützung gedacht und richtet sich vor allem an Sehbehinderte. Alle Inhalte sind auch mit älteren Browsern voll nutzbar. Für eine grafisch ansprechendere Ansicht verwenden Sie aber bitte einen moder

Das Biotechnologie und Life Sciences Portal Baden-Württemberg

Logo Bundesland Baden-Württemberg

Beginn Sprachwahl


Beginn Inhaltsbereich

Beginn Navigator

Sie sind hier:

Ende Navigator


14.01.2010

Evolution in Echtzeit

Max-Planck-Forscher messen, wie schnell sich das Erbgut verändert. Ihre Forschungsergebnisse, die neue Erkenntnisse in den Evolutionsvorgang bringen, wurden in der neuesten Ausgabe des renommierten Wissenschaftsmagazins "Science" veröffentlicht.

Mutationen sind das Rohmaterial der Evolution. Schon Charles Darwin hatte erkannt, dass Evolution nur funktionieren kann, wenn es vererbbare Unterschiede zwischen Individuen gibt: Wer besser an die Umwelt angepasst ist, hat größere Chancen, seine Gene weiterzugeben. Eine Art kann sich daher nur weiterentwickeln, wenn sich das Erbgut permanent durch neue Mutationen verändert und die jeweils vorteilhaftesten Veränderungen in der Selektion bestehen. Wissenschaftler am Max-Planck-Institut für Entwicklungsbiologie in Tübingen haben nun erstmals direkt die Geschwindigkeit des Mutationsprozesses in Pflanzen gemessen. Ihre Erkenntnisse werfen ein neues Licht auf einen grundlegenden Vorgang der Evolution und erklären zum Beispiel, warum Unkrautvernichtungsmittel oft innerhalb weniger Jahre ihre Wirkung verlieren.

Hohe Variabilität des Genoms

Angesichts der Genomgröße mag die Zahl der Neumutationen zunächst sehr gering erscheinen. Berücksichtigt man jedoch, dass dieser Prozess bei allen Individuen einer Art parallel abläuft, dann erweist sich das genetische Material insgesamt als erstaunlich plastisch: In nur 60 Millionen Arabidopsis-Individuen ist jede Position des Genoms im Durchschnitt einmal mutiert. Für eine Art, die Tausende von Samen in jeder Generation produziert, wahrlich keine große Anzahl von Pflänzchen.

Neben der Geschwindigkeit, mit der Neumutationen auftreten, wirft die Tübinger Studie ein neues Licht auf deren Verteilung im Genom. So stellten die Wissenschaftler fest, dass nicht alle möglichen Mutationsklassen gleichmäßig auftreten. Bei vier verschiedenen Arten von Basenpaaren im Genom gibt es sechs Möglichkeiten der Veränderungen - aber eine dieser sechs ist für die Hälfte aller Mutationen verantwortlich. Auch lässt sich nun genauer kalkulieren, wann sich die Entwicklungslinien verschiedener Arten voneinander getrennt haben - gut möglich daher, dass Stammbäume an neue zeitliche Maßstäbe angepasst werden müssen. Detlef Weigel geht anhand der neuen Daten etwa davon aus, dass Arabidopsis thaliana sich von ihrer Schwesterart Arabidopsis lyrata, die in vielen Merkmalen sehr unterschiedlich ist, nicht wie bisher angenommen erst vor fünf Millionen, sondern bereits vor 20 Millionen Jahren getrennt hat. Entsprechende Untersuchungen an anderen Arten könnten ebenfalls Neujustierungen nötig machen - etwa bei der Frage, zu welchem Zeitpunkt in der Ur- und Frühgeschichte verschiedene Haustiere und Ackerpflanzen domestiziert wurden.

Hohe Mutationsrate fördert Resistenzen gegen Herbizide

Auch für die Pflanzenzüchtung ergeben sich neue und Erfolg versprechende Gedankenexperimente. Bei genügend großen Populationen kann davon ausgegangen werden, dass nahezu jede mögliche Mutation im Verlauf einer oder weniger Generationen realisiert wird. Das bedeutet, dass spontan auftretende Mutationen, die den Ertrag steigern oder Pflanzen gegen Dürre unempfindlich machen, vermutlich gar nicht so selten sind, auch wenn das Auffinden geeigneter Veränderungen immer noch sehr aufwändig bleibt. Auf der anderen Seite treffen Herbizide, die auf große Flächen ausgebracht werden, auf eine umfangreiche Population von Unkräutern. Da deren Erbgut mit großer Wahrscheinlichkeit ähnlich wandlungsfreudig ist wie das der Ackerschmalwand, verwundert es nicht, dass Herbizidresistenzen innerhalb von wenigen Jahren auftauchen. "Dieser Effekt ist auch deshalb besonders deutlich ausgeprägt, weil Herbizide oft nur die Funktion eines einzelnen Gens beeinträchtigen", sagt Detlef Weigel. Ein Ausweg wäre die Suche nach Herbiziden, die auf mehrere Gene wirken.

Die Tübinger Biologen gehen davon aus, dass auch das menschliche Genom einer ähnlich schnellen Veränderung unterworfen ist. "Wenn man unsere Ergebnisse auf den Menschen überträgt, dann finden von einer Generation zur nächsten durchschnittlich 60 Basenaustausche statt", rechnet Weigel vor. Bei mehr als sechs Milliarden Menschen, die derzeit auf der Erde leben, bedeutet das, rein statistisch betrachtet, dass es für jede Stelle des Erbguts Dutzende von Erdbewohnern gibt, bei denen diese Position mutiert ist. "Alles, was genetisch möglich ist, wird demnach innerhalb recht kurzer Zeit durchgetestet", resümiert Detlef Weigel und beschreibt damit einen völlig neuen Blick auf die Evolution, der man sonst eher ein Arbeitstempo zuschreibt, das sich in Jahrtausenden oder gar Jahrmillionen bemisst.
Mit Empfehlung von:
Logo STERN
Max-Planck-Institut für Entwicklungsbiologie (31.12.09) - 14.01.2010

Originalpublikation:
Stephan Ossowski, Korbinian Schneeberger, José Ingnacio Lucas-Lledó, Norman Warthmann, Richard M. Clark, Ruth G. Shaw, Detlef Weigel and Michael Lynch. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science, 1 January 2010.

Weitere Informationen:
Prof. Dr. Detlef Weigel
Tel.: 0179 676 9032
E-Mail: Detlef.Weigel(at)tuebingen.mpg.de

Dr. Susanne Diederich (Presse- und Öffentlichkeitsabteilung)
Tel.: 0170 6304946
E-Mail: presse(at)tuebingen.mpg.de

Beginn Hauptnavigation

Ende Hauptnavigation

Weitere Artikel zum Dossier


SUCHEN


DATENBANK

für Unternehmen und Forschungseinrichtungen



NEWSLETTER


GLOSSAR

Hier finden Sie Fachbegriffe mit Erläuterungen




http://www.bio-pro.de/magazin/thema/00145/index.html?lang=de